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Introduction

In  this  tutorial  I’ll  demonstrate  you  my own method  of  designing  geared  3D twisty  puzzles  on  the 
example of Gear Pyraminx designed in SolidWorks (hereinafter SW). I must say it beforehand that this is 
not a tutorial for SW. So, if I say, “let’s make a loft surface from this curve to the center point”, I assume 
that you are aware of how to do it and where to find this feature in SW. Best, if you already have some 
experience of designing twisty puzzles. The purpose of this tutorial is only to show you how gears work 
and how to draw them in SW or other CAD programs.

§1. Plain gears.

Understanding the basic principles of gears theory is easier with plain (2D) gears. You can find many 
articles on this topic in the web, but they seem to contain too many definitions and formulae. I’ll try to 
limit myself with the only notions that we need in designing geared twisty puzzles and make it as simply 
as possible.

Fig 1. Pitch circle.

Pitch diameter (Dp) is the effective diameter of the gear. Suppose we have 2 gears of different size that 
are rotating together in a gear connection and we want to replace them with toothless rollers but keeping 
the same angular velocities ratio. Diameter that each roller must have is the pitch diameter. Mostly, pitch 
diameters are related with the same ratio as the numbers of teeth on the gears.
Here’s another approach to understand the pitch diameter. Let’s double the number of teeth on each gear. 
Obviously,  the teeth will become smaller, but the angular velocities relation will stay the same. Let’s 
double the number of teeth again – and so on. In the infinity size of the teeth will tend to zero and we’ll 
get 2 rollers. Diameter of each roller is the pitch diameter of original gear.

Module
An important parameter of the gear that determines size of the teeth is the module. Module is the pitch 
diameter divided by the number of teeth (N): m = Dp / N.

Rule: Gears that are supposed to be connected and work together, must have the same module.
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Outside and root diameters (Do, Dr)  are the diameters of tops and bottoms of the gear teeth. In ideal 
universe they would be equidistant from the pitch diameter (with module as the distance), but in practice 
the bottom diameter is made a little smaller to avoid contact between bottoms and tops of contacting 
gears:

Do = Dp + m,
Dr = Dp – 1.25m.

Base circle

To  understand  what  base  circle  is,  we  need  to 
understand what curve lies behind a tooth profile. 
Of course, different curves may be used for tooth 
profiles, but the most  widespread approach is to 
use an  involute (another word is  evolvent) of a 
circle. Involute is a curve that is drawn by an end 
of a thread which is winded (or unwinded) around 
some circle. Actually involute is an infinite spiral, 
but a very short part of it is used in a tooth profile 
– only the part that lies between outside and root 
circles.  Base  diameter Db of  a  gear  is  the 
diameter  of the circle,  from which the thread is 
being unwinded to make a tooth profile.

Fig. 2. Involute of a circle (source: Wikipedia).

Fig.3.Drawing a base circle from the pitch circle.

Base diameter that is used for drawing an involute determines pressure angle of the gear connection. We 
will not need any information about pressure angle (you can find it yourself in case you’re interested) 
except for the fact that usually pressure angle of 20° is used. To draw the base circle, take any point on 
the pitch circle and draw a tangent line. Then draw another line at 20° to the tangent through the same 
point. A concentric circle that has this line as a tangent is a base circle. Obviously, Db = Dp · cos 20° (this 
relation is valid only for plain gears). Base diameter is always smaller than pitch diameter (this is valid 
also for conical gears).
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If there are many teeth on the gear, they are small and completely lie outside of the base circle. But with 
smaller number of teeth root diameter is smaller than base diameter (you can calculate from the previous 
definitions that this happens when a plain gear has less than 18 teeth). Because an involute does not exist 
inside the base circle, in such case we are kind of unlucky as we don’t know how to draw this inner part 
of tooth profile. This problem is solved so: at first draw an involute part that you can draw (between base 
circle and outside circle) and continue the curve inwards by a visual feeling until you reach the root circle.

§2. Introduction to 3D gears.

Gears that we have been talking about in the previous section are plain 2D gears whose rotation axes are 
all parallel to each other. In twisty puzzles (well, in most twisty puzzles), all rotation axes go to the center 
of the puzzle so they are not parallel. Gears that are supposed to work with non-parallel axes must be 
conical. They are drawn on a sphere and projected towards the center. 

As I already said, there’s plenty of information in the web about plain gears but I found almost nothing 
about principles of designing conical gears so I had to derive them myself. Actually they are the same as 
with plain gears, but there are some very significant and interesting differences.

§3. Sketch of the puzzle.

After we have some idea of a gear puzzle in the head, at first we draw a sketch of a geared layer (usually 
it’s an external layer, while non-geared mechanism is placed inside). At this step we do not need to have 
gears and can use conical rollers  instead. As you remember,  conical  rollers represent pitch circles of 
future gears and they have the same angular velocities ratio, so they are almost equivalent to gears. To 
draw the rollers, you may cut them from the sphere with conical cutting surfaces.

Fig. 4. Preliminary sketch of Gear Pyraminx.

Here is how the rollers sketch for Gear Pyraminx looks like. Obviously, the cutting layer can be moved 
here and there thus making the edge gears bigger or smaller. At this step we should measure and compare 
all 3 pitch diameters (corner, edge and the big circle under the middle layer). 

Rule:  Mutual  ratio  of  these  diameters  should  be  expressed with  small  natural  numbers as  close  as  
possible. These numbers will represent numbers of teeth on the future gears.

Best, if you take and write down the dependence of the diameters ratio vs cutting angle. 
In my case of the Gear Pyraminx I found an angle that gives the following diameters ratio:
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11.95 mm : 17.92 mm: 31.72 mm = 1 : 1.50 : 2.654, or

6 : 9 : 15.92.

That leads to the ratio 6 : 9 : 15 that is now used in the Gear Pyraminx. Is that very bad that 15 is taken 
instead of 15.92? It's not. Gears can actually forget much - I just increased space between teeth by 6% and 
drew 15 teeth where there should be 16.

Important thing of this ratio is that 9 and 15 divide by 3 – this is necessary for rotational symmetry of the 
puzzle. And it’s good that the edge gear has 6 teeth – first, because it divides by 2 (so the edge gear can 
be flipped), second, because edge and corner teeth numbers both divide by 3. This simplifies the puzzle 
and makes it definitely easier to solve (if we had 7 and 9 teeth on the edge and the corner, I don't think it 
would be pleasant to solve the puzzle). I personally think that this ratio 6:9:15 is ideal for Gear Pyraminx 
and better ratio just does not exist.

Now when we know the number of teeth, we can calculate the module by dividing the pitch diameters by 
6,  9  and  15.  We'll  get  1.99  mm,  1.99  mm and 2.11  mm.  Because  15  is  kind  off  a  miss,  we take 
m = 1.99 mm.

§4. Drawing a gear on the sphere.

Let’s  start  with  the  smallest  gear  (edge).  Because  we need  to  draw much,  you  might  want  to  hide 
everything except for the gear roller.

Fig. 5. Drawing root and outside circles.

For drawing root and outside circles, we should keep in mind the following:
1. Both root and outside circles belong to the sphere. They are not complanar with the pitch circle.
2. The distances from the pitch circle (m and 1.25m) are measured off along the arc that lies on the 

sphere as well (note the arc sign above the numbers). I don’t know about other CAD programs, but 
SolidWorks has a nice feature that allows to specify the arc length directly.
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Fig. 6. Drawing the base circle.

The base circle is drawn with similar procedure that I described above, but in spherical geometry both 
lines (that are supposed to be at 20° to each other) are replaced with great circles (great circle is a circle 
on a sphere whose center coincides with the center of the sphere). Because SW can define angle only 
between lines, we have to draw some auxiliary lines:
1. Draw a line that is tangent to the pitch circle (Line 1).
2. Draw a line that is at 20° to Line 1 and tangent to the sphere (Line 2).
3. Draw an arc that lies on a great circle and is tangent to Line 2 (Circle 1).
4. Draw a circle that belongs to the sphere, is tangent to Circle 1 and concentric with the pitch circle 

(Base circle, at last). Actually the base and pitch circles are not exactly concentric because they lie in 
different planes, but SW allows this relation for circles in parallel planes.

After that, I recommend to draw a surface object of the great circle that contains Circle 1 and make some 
copies of it by turning around the gear axis. Actually we’ll need only the outlines, so why do we need a 
surface object? Just because SW does not allow making turned copies of a 3D sketch as easily as of a 
surface object.

Fig. 7. Some great circles that are tangent to the base circle.
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What are we supposed to do with all these great circles? They are equivalent to the dotted straight lines 
from Fig. 2 that symbolize the unwinded thread and we will use them for the same purpose.

Fig. 7. Finding points of the involute (four points are already found).

So we find points of the involute:
1. On the base circle, measure the arc length from the starting point to the point where the great circle 

touches the base circle ( “3.527” in gray on Fig. 7).
2. On the great circle, measure off the same arc length from the touching point in the opposite direction. 

Doesn’t it look like unwinding a thread? The difference from 2D case is that the thread must belong to a 
great circle of our sphere. The above procedure is repeated until we overgo the outside diameter. We 
don’t need involute points behind it.

Fig. 8. Points of the gear profile.

So here they are - our precious points of the gear profile. Note that here we have the situation I’ve told 
you about – a big part of a tooth can not be represented by an involute because it lies below the base 
diameter. You have to put these points (blue) on the sphere by a visual feeling as the continuation of the 
above part.  Then connect the points with a spline curve and make a surface loft to the center of the 
sphere.
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Fig. 9. One side of a tooth profile.

Now it’s time to mirror it to get another side of the tooth. Here arises a question – how thick should a 
tooth be? Where should we place the mirror plane?

Fig. 10. Middle of a tooth.

The answer is: thickness of a tooth measured along the  pitch circle must be a little smaller (say, 95%) 
than half of the angular period. This angular period is also called pitch* and it is equal to the pitch circle 
length divided by the number of teeth (i.e. pitch = π·Dp / N = π·m). So, for m = 1.99 mm, the middle point 
of a tooth lies at π·m / 2 * 0.95 / 2 = 1.407 mm away from the tooth edge .
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Fig. 11. Both sides of a tooth are ready.

But we need a whole tooth, not only the active sides, so we add root and outside surfaces (with the same 
surface loft function) and trim them mutually to build a full tooth that can be circularly patterned (6 times 
for the edge gear) around the gear axis.

  
Fig. 12. Building a complete tooth.

Fig. 13. Gear surface with a conical roller of the edge gear.
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Then we just need to extend the roller (move face function) so that it could be split by the gear surface. 
Et voilà – our first gear is ready!

Fig. 14. Edge gear as a solid body.

The corner gear is drawn with the same steps. 

Fig. 15. Our workshop with edge and corner gears. Does it look like a Gear Pyraminx?

On Fig. 15 the gears look like they are in conflict, but don’t worry – it’s only the orientation. You can 
turn them anytime you need it.

§5. Drawing a big circle gear.

The big circle gear is drawn the same way,  I’ll  just show you some intermediate pictures with short 
comments.
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Fig. 16. Drawing the base circle.

Note how far the base circle is from the pitch circle. It’s because the pitch circle is relatively big – it’s just 
a little smaller than a great circle.

Fig. 17. Outside and root circles.

As you can see, the base circle is now below the root circle, so the whole tooth profile will be an involute 
and we will not have to invent anything.

Fig. 18. Finding involute points.
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Fig. 19. One tooth of the big gear circle.

It may be surprising but the tooth is concave. It’s a spherical geometry, what else would you expect?

After circular pattering of this tooth 15 times we get the whole surface. Because the big gear circle is not 
actually a gear, but a profile that belongs to many parts, we keep it as a cutting surface.

Fig. 20. All gear surfaces are ready and may be used.

§6. Handling of other parts. 

How do we use this surface? Imagine what happens if we turn upper corner gear. The edge gear will be 
turning and moving together with middle layer. To allow that, all parts below the surface must have teeth 
while the parts of the middle layer above the surface (except for the edge gear) must be cut off partially so 
that they do not get in conflict with the teeth below. Also, we need to cut non-geared parts of the corner 
and the edge to allow the gears turn. For example, here’s what happens with the triangle that is adjacent 
to corner gear (Fig. 21).
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Fig. 21. Change of the non-gear corner element.

As for the non-geared edge part, it has to be cut from three sides: by teeth of the big gear circle and the 
edge gear itself (Fig. 22). A very small part of it is left.

Fig. 22. Change of the non-gear edge element.

After making some copies we see something that resembles the face of the Gear Pyraminx (Fig. 23). 
Now, if we turn the upper corner, the edge will turn between the corner gear and the parts of the big gear 
circle, while other other middle layer parts will slide along without hindrance.
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Fig. 23. Geared layer is ready!

§6. Finishing.

Now that the geared layer is completed, there’s not much left to do. As a next step, we build a pyraminx 
mechanism under the gear layer and fuse the parts of both layers with each other.

Fig. 24. Pyraminx mechanism layer.

But we wanted to make a tetrahedron, didn’t we? To make a tetrahedron out of our spherical mechanism, 
we extend all parts beyond the tetrahedron faces and split them.
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Fig. 25. Shaping the puzzle into the tetrahedron.

Fig. 26. Shaping finished. Fig. 27. Alternative Gear Pyraminx.

It’s worth mentioning that Fig. 26 is not the only possible appearance of Gear Pyraminx. After the big 
gear circle was ready, we could have turned it by 12° (half a tooth) and the whole puzzle would look 
different (Fig. 27). I found the first version more attractive and solid – the alternative has way too thin 
and sharp elements.

The rest steps are standard: rounding, hollowing (for 3D printing), printing parts and a little handwork.
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Fig. 28. Design completed.

  

Fig. 29. Physical implementation.
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